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ABSTRACT 
Federal track safety regulations require railroads to inspect all tracks in operation as often as twice 
weekly. Railroad companies deploy expensive and relatively slow methods using human inspectors and 
expensive automated inspection vehicles to inspect and monitor their rail tracks. The current practices are 
not only expensive and decrease rail productivity by taking away track time to perform inspection, but 
also increase the safety risk for railway inspection workers.  

Sensors, such as inertial sensors, accelerometers, gyroscopic sensors, and global positioning system 
(GPS), are carried on a railway vehicle to continually monitor and inspect rail assets to meet the growing 
safety improvement needs for reliable and low-cost rail operations. Smartphones use such sensor 
networks, including wireless communication microchips. In this research, smartphone-based signaling 
data collection applications, data fusion algorithms, and data processing algorithms to detect a wide 
variety of possible track surface abnormalities are developed and validated.  

The research methods will not rely on adapting sensor configurations, and will require only a data upload 
capability. The new sensors will compress and upload their geo-tagged inertial data periodically to a 
centralized processor. Remote algorithms will combine and process the data from multiple train traversals 
to identify abnormal track surface symptoms, and localize their positions. Track surface abnormality 
identification will enable asset managers to allocate the appropriate specialists to scrutinize the 
abnormality location. 
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1. INTRODUCTION 

1.1 Background 
Railroads spend billions of dollars on infrastructure maintenance and condition monitoring each year [1]. 
Federal laws currently specify the type and regularity of full track inspections. Railroad companies deploy 
relatively slow and expensive methods using human inspectors and automated inspection vehicles to 
search for possible abnormalities. The expense and labor requirements of these existing non-destructive 
evaluation (NDE) methods limit their ability to scale for continuous and network-wide monitoring for risk 
mitigation and safety improvements. Hence, the industry could save billions of dollars if sensors aboard 
regular rolling stocks could screen the infrastructure for track surface abnormalities automatically and 
continually. Such a solution would enable asset managers to focus inspections on areas with a high 
likelihood of surface abnormality without closing lines to search for developing issues.  

Federal track safety standards require railroads to inspect all tracks in operations as often as twice weekly. 
However, with resources thinly stretched and the rate of abnormality formation escalating with traffic 
load-density, railroads seek to enhance the efficiency of inspections and maintenance of way. The current 
inspection practices not only decrease rail productivity by taking away track time to perform inspection 
and maintenance, but also increase the safety risk for railway inspection workers. Based on FRA reports, 
there were 358 railroad employee-on-duty fatalities from 1999 to 2017; 309 cases occurred on or near a 
track, and 130 of those were track inspection and maintenance employees. Track surface abnormality 
screening sensors on rolling stock will automatically and continually provide track condition profiles and 
characterize potential abnormalities without risking maintenance employees’ lives. Such a solution would 
free up more track time and capacity previously reserved for manual inspections while improving safety 
for railroad workers. 

The inertial responses of a railcar are symptoms of possible track surface abnormality. Although not the 
case in all track surface abnormalities, a significant majority of them produce accelerated car movements 
in all directions [2]. Inertial sensors that monitor vehicle-track interactions (VTI) exist, and are widely 
used due to their small size, low cost, low power consumption, and robustness [3]. However, they do not 
classify their level of severity [4]. Existing sensor-based approaches generally produce alerts directly 
when acceleration magnitudes exceed fixed thresholds. Inspectors must then travel to the estimated 
locations of every alert event to search for associated abnormalities. Technicians must also pre-configure 
such sensors with thresholds based on their experiences or intuition. Without an objective and consistent 
approach to setting thresholds, some significant track abnormalities could go unnoticed, whereas minor 
ones could result in unnecessary and expensive inspections. The inertial responses of vehicles will vary 
with train speed, gross weight, suspension system design, and weather conditions. Therefore, thresholds 
must adapt to the specific circumstances to improve accuracy and reduce false positives. However, 
threshold adaptation can be complex and expensive. Adaption that uses complex algorithms on remote 
servers will require that the sensors support two-way communications, thus increasing their cost. 

The method developed in this research will not rely on adapting sensor configurations, and will require 
only a data upload capability. The new sensors will compress and upload their geo-tagged inertial data 
periodically to a centralized processor. Remote algorithms will combine and process the data from 
multiple train traversals to identify abnormal symptoms and localize their position. Track surface 
abnormality or unevenness classification will enable asset managers to allocate the appropriate specialists 
to scrutinize the uneven surface location. 
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1.2 Research Objectives 
The primary goal of this study is to research, develop, and evaluate an automated symptom screening 
system for railroad tracks and equipment. The system will locate and characterize the possible track 
surface abnormality by analyzing the inertial dynamics of hi-rail vehicle. The research team will include 
at least two Ph.D. students who will learn and practice the required signal processing, data processing, 
modeling, and signal classification techniques. The research output will feed into the development of new 
curricula in multimodal intelligent transportation systems for a transportation and logistics (TL) program. 
Students will be able to use the framework established in this research as part of laboratory exercises and 
to identify additional research projects that will refine and build upon its initial capabilities. An ability to 
demonstrate the full solution via smartphone embedded sensors will lead to outreach activities that would 
encourage manufacturers of ruggedized industrial sensors to engage in technology transfer for the 
commercialization of a dedicated or customized solution. The following summarizes the primary research 
objectives:  

1) Develop and modify a smartphone data logging application (app) to collect data onboard a hi-rail 
vehicle or/and in-service vehicle  

2) Develop, demonstrate, and validate the signal compression, track surface abnormality, or 
unevenness detection algorithms   

3) Train two Ph.D. students on the various theoretical and simulation methods employed  
4) Develop publications and associated outreach material suitable for engaging sensor manufacturers 

and service providers in possible technology transfer activities for full product commercialization   
5) Utilize the research findings and techniques developed to draft classroom instructional material, 

laboratory exercises, and student project plans for new curricula in multimodal intelligent 
transportation systems for TL programs.  

These research objectives will further the overall goals of promoting economic development, safety, 
interdisciplinary education, workforce development, and technology transfer that serves the critical needs 
of the Mountain-Plains Region. 

1.3 Report Organization 

This section introduces the organization of the report: 

Section 2 describes track surface abnormalities and conducts a complete literature review on the current 
practice of track condition monitoring. Techniques reviewed include the current practice in NDE and 
approaches that use inertial sensors and digital signal processing. 

Section 3 summarizes the specifications and developments of a smartphone data logging app for rail track 
condition monitoring. 

Section 4 introduces the data collection plan and the data cleaning and data fusion techniques developed 
in this research. 

Section 5 introduces and demonstrates feature extraction methods to identify and locate track surface 
abnormalities. Methods are validated with ground truth. 

Section 6 summarizes the conclusions and recommendations from the study. 

  



3 
 

2. LITERATURE REVIEW 
A complete literature search to understand state-of-practice and state-of-the-art on sensor-based rail track 
monitoring is critical to comprehend the body of knowledge. The review will cover research background, 
types of surface abnormalities, their measurements, current railroad practice, and inertial sensor-based 
systems.  

2.1 Significance 
Studies show that a combination of track and equipment failures causes over half of all rail accidents 
around the world (Astin, 2011). U.S. train accidents declined 71% from 1980 to 1990. However, the track 
and equipment caused accident rate has leveled off since then (GAO, 2010). This implies that breaking 
the past plateau will require additional resources and/or efficiency improvements of existing approaches 
for locating and remediating track abnormalities as soon as they form. Railroads will benefit 
economically from finding and fixing abnormalities quickly, before they cause derailments or costly 
delays.  

Railroads have been downsizing since 1980 while their operational efficiency improved. They now have 
fewer than half as many employees per mile of road operated. (Tolliver and Bitzan, 2005).  At the same 
time, the rate of traffic growth has steadily increased (FRA, 2011). Previous studies show that track 
abnormality forms at a rate directly proportional to accumulated trainloads (Besuner et al., 1978). 
According to data compiled from the American Association of Railroads (AAR), ton-miles per track-mile 
have tripled since 1980, as shown in Figure 2.1. This indicates a widening gap between the rate of 
abnormality formation and the labor resources available to discover, diagnose, and fix them. Data from 
the Surface Transportation Board (STB) show that Class I railroads currently assign nearly one in four 
employees to the maintenance of way and structures (AAR, 2011). 

In the last decade, there were nearly 26,000 accidents, which resulted in 446 deaths and 5,300 injuries, 
costing the railroad industry more than $3.8 billion. In 2013, there were 1,854 train accidents, and track-
related issues accounted for more than 30% of train accidents. Derailments accounted for almost 60% of 
the train accidents from 2008 to 2017. Hence, railways invest 15% of their total revenue on maintenance 
and condition monitoring every year. 

2.2 Federal Track Safety Inspections 
The Federal Track Safety Standards (FTSS), documented in 49 Code of Federal Regulation (CFR) 
§213.233, defines both the type and frequency of inspections for each track class. These standards require 
visual inspections at least twice weekly for most track classes in operation. The Federal Railroad 
Administration (FRA) rigorously enforces these standards and imposes hefty fines for non-compliance. 
The FRA operates several automated inspection cars containing a variety of non-destructive-evaluation 
(NDE) technologies to analyze most tracks in operation each year. 
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Figure 2.1  Growth in traffic load relative to employment per mile of road 
 
Railroads augment visual inspections with automated NDE equipment to locate developing and mature 
abnormalities more quickly. However, the overall inspection rate is practically limited because the trailing 
repair gang must still be able to schedule track time, weather permitting, and keep up with the rate of 
abnormality discovery. A recent FRA survey found that railroads conduct 94% of visual inspections with 
the aid of a hi-rail vehicle (Al-Nazer et al., 2011). These contain hydraulic pumps to lower track wheels 
onto the rail when entering the rail line and raise them when returning to the pavement. Since many 
defects are not observable from a hi-rail vehicle, inspectors must still patrol the tracks by foot.  

2.3 Track Surface Abnormality 
Railroad defects or faults are interchangeable terms widely used in the railroad industry, and they form a 
rather broad topic. A railroad structure consists of the rail track and the substructure. This report will 
cover only track structure faults, and will categorize them into track fault and track surface abnormality. 
Rail faults can develop in any type of rail or rail weld as a result of the rail manufacturing process, 
cyclical loading, and impact from rolling stock, rail wear, and plastic flow. Rail surface anomalies or rail 
surface abnormalities are interchangeable terms used by researchers in the railroad industry.  A rail 
surface anomaly or abnormality is one that deviates from a standard or normal rail surface. It is an 
abnormal track surface feature, characteristic, or occurrence in rail track surface. This research only 
focuses on track surface abnormality detection.  

2.3.1 Type of Surface Abnormalities and Their Measurements 

The wheel-rail contact geometry relationship is a common problem in the railroad system. A mismatched 
wheel-rail surface due to abnormal track surface will lead to serious problems for a running train, such as 
instability and high contact stress between the wheel and rail, which may further result in heavy tread 
wear, fatigue cracks, high noise, and derailment. Track maintenance agencies require many resources to 

(Revenue Ton-Mile)
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continually monitor the track surface abnormality condition. Table 2.1 summarizes the common types of 
surface abnormality, detection tools, and remedial action. 

Table 2.1  Summary of Track Surface Abnormalities and Their Measurements 
Surface Abnormality Detection Tools Measurements Remedial action 
Gauge (56½ inches) Gauge measurer 56 inches ≤ gauge ≤ 58 

inches 
Adding spikes or tie 

Alignment (62 feet) String > 5 inch  
Cross level Track level > 3 ½ inch on curves 

> 2 ½ inch on normal 
Tamping fresh ballast 

Profile (62 feet) String > 3 inch Tamping fresh ballast 
Warp Track level > 3 inch Tamping fresh ballast 
Cant Track geometry 

recording trolley 
< 5 inch  

Twist Track geometry 
recording trolley 

1 inch in 62 feet  

*Dipped joints Laser   
Corrugation: Short Pitch 
Long Pitch  Optical and laser 30mm to 90mm wavelength Grinding >  300mm wavelength 
Squats Sound / Ultrasonic  Grinding or replace 

Turnouts (Chipped) Optical 

> 7/8 inch  

Repair or replace 
¾-inch deep and longer than 
4 inches 
5/8-inch deep and longer 
than 7 inches 

 
2.3.2 Summary 

Track surface condition monitoring is highly demanded in the railway industry to meet the ever growing 
needs of safety, reliability, and lower-cost operations. There are two categories for these modern track 
condition monitoring systems: track side or on-board systems. On-board monitoring systems have been 
used most often to monitor for track defects. Sensors typically used for these on-board monitoring 
systems typically include accelerometers, gyros, noise sensors, and a GPS, which are often used 
altogether to detect track surface irregularities, vehicle speed and location, and vehicle dynamic behavior. 

2.4 Current Railroad Practice  

Railroads supplement human visual observations with specially outfitted inspection cars that 
autonomously analyze the track for abnormalities using NDE technologies. These include 
electromagnetic, acoustic, optical, and inertial sensing methods, which this research organizes in the 
taxonomy of Figure 2.2. When deployed on inspection cars, NDE can locate many types of abnormalities, 
faster and more consistently than most human inspectors can. However, they have significant 
shortcomings in accuracy, precision, size, and costs. Moreover, inspection vehicles add non-revenue 
traffic to the tracks, which decreases available capacity and potentially increases downtime. 

Railroads deploy NDE methods in two ways: as infrastructure integrated sensors to monitor the local area 
infrastructure and passing train characteristics, and as rolling stock integrated sensors to continually 
monitor the traveled infrastructure and vehicle for defects. 

The latter method is favored by researchers because of its effectiveness. But the size and cost of these 
technologies currently limit their deployment to specially constructed automated inspection vehicles that 
locate internal rail flaws and irregular track geometry, track modulus, and gauge restraint. According to 
§213.233 of the FTSS, railroads must conduct automated track geometry measurements one to three times 
annually per section of track.  
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Figure 2.2  A taxonomy of NDE technologies 
 
The FRA believes “the development of measurement technologies fitted on moving equipment has 
greatly increased the accuracy and speed of inspections, and has been a major factor in the decline of 
track-caused derailments” (FRA, 2008). 

All NDE technologies emit some forms of energy into the track area and sense a response. The 
transmitted energy can be electromagnetic, optical, acoustic, or kinetic. Although some of these 
technologies have continually improved over the years, they are still not sufficiently accurate to replace 
visual inspections. The Amtrak derailment near Flora, Mississippi, on April 6, 2004, is a characteristic 
case study of this shortcoming (NTSB, 2005). The literature search finds that no single NDE technique 
offers a complete solution for locating and characterizing all types of defects. 

Therefore, all full-scale solutions combine a variety of complementary NDE techniques.  These 
combinations further increase their size, complexity, computational, and maintenance requirements 
(Papaelia et al., 2008). The most constraining technologies of the combined solution limit the inspection 
speed well below the average revenue-service train speed (Clark, Gordon, and Forde, 2003).  The next 
few sections examine the functionality and limitations of each type of technology. A complete literature 
review regarding inertial sensor-based track condition monitoring systems and digital signal processing is 
summarized by Chia et al. (2019). 

2.4.1 Electromagnetic Sensors 

Waveforms carrying electromagnetic energy pass through a media, induce eddy currents at the media 
boundary, or reflect from the media boundary. Probes inject electromagnetic energy into the track area, 
and sensor arrays pick up the reflected energy or induced currents. 

2.4.1.1 Electromagnetic Induction 

An alternating current in a coil placed within a few millimeters of the railhead will induce eddy currents 
in the conductive portions of the rail. A second receiver coil monitors the phase and magnitude of these 
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eddy currents to detect changes in the electrical conductivity and magnetic permeability of the material. 
Rail flaws, such as cracks, will show up as parameter changes from normal. 

Eddy current approaches are one of the earliest NDE methods used. They have the advantage of being 
able to detect small cracks near the surface of complex shapes, such as a rail. However, they cannot 
analyze non-conductive materials. In fact, the surface finish and standoff distance from the rail affects the 
reading. Consequently, these probes must travel relatively close to the railhead with a consistent standoff 
distance. This requirement practically limits their speed and potential for deployment on revenue service 
trains.  

2.4.1.2 Radio Wave Propagation 

Ground Penetrating Radio Detection and Ranging (RADAR) systems, also known as GPR, provide an 
interpretation of the load bearing capacity of the underlying track support structure, particularly the 
ballast, sub-ballast, and sub-grade (Silvast et al., 2010). A GPR produces a radiographic image 
interpretation of the subsurface layers by sending an electromagnetic energy pulse into the ground and 
observing reflections of the propagating radio waves. Typical GPR frequencies range from 400 MHz to 3 
GHz, depending on the depth and resolution of interest. Decades of research in GPR seem to converge on 
2 GHz for characterizing the degree of ballast fouling near the surface, and 500 MHz for identifying sub-
ballast and sub-grade anomalies to a depth of about 6 feet. 

The FCC limits the radio frequency power output at various frequencies. This constrains the convergence 
time needed for the background noise filters, which practically limits the inspection vehicle speed to 
about 25 mph.  Surveying smaller areas between ties for more detail will constrain the speed to about 8 
mph. Reducing the scan depth to a few inches, and quadrupling the antennas and controllers to decrease 
the scanning area per antenna, can push the inspection speed to about 125 mph (Roberts et al., 2009).  
However, the size of these high directivity antennas are inversely proportional to the radio frequency 
wavelength and can measure several feet in each dimension, as shown in Figure 2.3. The high output 
power also requires physically large power supplies and power conditioning circuitry to minimize noise 
contamination in the faint backscatter signals. 

When combined with mechanistic models, GPR data can estimate vertical modulus to predict failures 
(Narrayanan et al., 2004). However, as with other NDE techniques such as eddy currents, considerable 
expertise is necessary to effectively design, conduct, and interpret GPR surveys. High conductivity 
materials, such as clay and salt contaminated soils, limit GPR performance. Rocky soils also excessively 
scatter the signals and reduce the information content. In general, GPR solutions are presently too large, 
slow, and expensive for integration on revenue generation trains. 

2.4.1 Acoustic Sensors 

2.4.2.1 Audio 

Wheel bearing defects and wheel flats produce acoustic signatures that either wayside or rolling stock 
microphones can detect. Although they cannot detect all bearing defects, they tend to outperform infrared 
heat detecting solutions, because defective bearings will generate a characteristic acoustic signature much 
earlier and heat much later in their deterioration cycle. Most commercially available solutions are wayside 
monitors that sense the acoustics of passing vehicles (Rasmussen, 1998). Wayside monitors can be 
effective in identifying equipment defects, but do occasionally miss a few that have actually led to 
derailments (Southern et al., 2004). Although considered a well-established inspection technology, on-
board devices are almost non-existent, most likely because of their limited capabilities and narrow 
application focus. 
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Figure 2.3  GPR attachment for a hi-rail [image credit: Federal Railroad Administration (FRA), 2009] 

2.4.2.2 Ultrasonic 

Thermal expansion creates longitudinal forces in the rail that promote fatigue cracking, welding 
separation, and fretting corrosion in bolt-jointed parts. Compressive stress from thermal contraction can 
lead to track buckling under dynamic trainloads and velocities.  The speed of ultrasonic wave propagation 
along the track is proportional to such longitudinal rail stresses (Kube, 2010). However, measuring the 
waveform propagation speed to the desired accuracy requires a sufficiently wide separation between the 
exciter and receiver, and hence multiple probes. 

Most ultrasonic flaw detection applications utilize frequencies from 500 KHz to 10 MHz. At frequencies 
in the megahertz range, sound energy does not travel efficiently through air or other gases, but it travels 
freely through most liquids and solids. Therefore, systems designed for inspection cars use liquid-filled 
rubber wheels to couple the excitation energy into the rail. However, this approach limits inspection speed 
to about 40 mph (Phillips, 2006). Minor variations in the wheel probe position, water path length, and 
internal fluid temperature significantly affect wheel probe results. The technique also misses cracks in the 
rail-web and rail-foot (Garcia, 2011). 

Ultrasonic NDE is a relatively new technology, and there is still much to learn about the behavior of 
guided waves in complex structures, such as railroad tracks. There are also numerous performance 
limitations. For example, the presence of residual layers from wheel burns can shadow internal defects. 
The backscattered waveforms require complex signal processing and experts to interpret them. The 
technique is better suited for flaw detection in the material core and relatively poor at detecting surface or 
near-surface defects, where most of the surface abnormalities are located. Therefore, most NDE 
equipment includes electromagnetic probes to compensate for this deficiency (Zahran, Shihab, and Al-
Nuaimy, 2002). In addition to the limited testing speed, multiple probe types increase the equipment size 
and power consumption, making them ill-suited for integration on revenue service trains. 

2.4.3 Optical Sensors 

Optical systems use light emitters to illuminate the surface and image sensors to capture the reflected 
light. Some systems use laser sources to measure the distance from the surface while others use high-
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powered exotic gas light sources to illuminate the surface for image registration. Environmentally 
insulated and explosion proof cabinets must protect these devices from the harsh environments, making 
the construction bulky and expensive. 

2.4.3.1 Light Detection and Ranging (LIDAR) 

LIDAR measures the light reflected from a transverse laser beam emitted across the travel path to create a 
surface depth profile. Rotating mirror assemblies move a laser light spot across the travel surface. A series 
of lenses focus the reflected light onto position-sensitive light detectors (photodiode arrays) that translate 
the distance from the surface to a proportional electrical signal. 

Variations in track modulus cause dynamic loading, which reduces the life of track components. Modulus 
is the supporting force per unit length of rail per unit of vertical deflection, or simply track stiffness. 
Lower quality rails, ties, rail joints, ballast, and sub-grade exhibits lower track modulus (Selig and Li). 
Traditional methods to measure modulus require track crew traveling the track to apply known loads with 
a falling weight deflectometer (FWD) and measuring the resulting deflection (Huille and Hunt, 2000). 
Automated methods use LIDAR to estimate the modulus by measuring the amount of rail displacement 
from a tangential horizontal plane above the wheel contact point. 

The laser scanning action produces sufficiently high transversal surface resolution, but longitudinal 
resolution decreases with increasing train speed. The high transversal resolution is an advantage of 
LIDAR, but the limited longitudinal resolution is a major shortcoming. Manufacturers can overcome this 
limitation, to some degree, by using sophisticated components that increase the scan rate, thereby 
increasing the inspection speed beyond 40 mph. However, such additional performance requires larger 
and more expensive construction. Overall, the physical limitations in signal bandwidth, signal-to-noise 
ratio, sample rate, power consumption, and processing speed ultimately provide diminishing returns in all 
such optical systems. These systems must also operate relatively close to the tracks, and their relatively 
large construction and hardening to withstand the harsh environmental conditions make them less 
attractive for installation on revenue service trains. 

2.4.3.2 Machine Vision Systems 

With the appropriate level of surface illumination, machine vision systems can capture an image and 
process it to extract features that would identify and characterize surface abnormalities. Image feature 
analysis can identify obvious abnormalities, such as missing rail fastener components, rail surface 
deterioration, cracked ties, broken rails, broken switch points, mud spots, and excessive ballast 
vegetation. More recent systems add additional cameras to create stereoscopic vision or 3D images for 
depth information. Adding infrared filters will shift the spectral sensitivity toward longer wavelengths to 
detect cold wheels, hot wheels, and hot journals. Wheels colder than others can indicate poor brake 
performance. Relatively hot wheels can indicate skidding or sticking brakes. Hot journals can indicate 
impending bearing failure or overheating from ceased bearings, which can cause a derailment. 

The main advantages of machine vision systems include greater objectivity and consistency than human 
inspectors. However, they have numerous disadvantages. In general, machine vision solutions require 
large storage capacity for the images, and an ample light source with sun shielding for consistent image 
quality. Image processing is computationally intensive and often involves self-learning algorithms to 
detect specific objects in the image frame. High-power xenon lights or lasers can improve the lighting 
condition for a subset of image analysis types, but they add significant cost, bulk, and power 
consumption. Another shortcoming of car-mounted cameras is that the longitudinal resolution depends on 
the frame capture rate, which in turn limits the car operating speed. Technology advancements can 
increase frame rate at higher cost, but their difficulty coping with unusual or unforeseen circumstances, 
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such as occlusion from precipitation, leaves, or debris, ultimately limits their accuracy (Sawadisavi, 
2008).  Even at high frame rates, these systems cannot detect abnormality under conditions of low 
illumination or line-of-sight obstructions. Most of the systems reported in the literature provided roughly 
80% detection accuracy for the specific abnormality they targeted, nonetheless, those were under 
conditions of good lighting and reasonably high image resolution. 

2.4.4 Inertial Sensors 

This general class of NDE relates to systems that measure the impulse response from mechanical energy 
directed into the track structure. 

2.4.4.1 Falling Weight Deflectometer 

Methods of structural capacity estimation in the 1980s used an FWD to direct kinetic energy into the track 
support structure while observing the surface deflections with an impulse response sensor, such as a 
geophone (Burrow, Chen, and Shein, 2007). An inspection car or Hi-Rail typically hauls a trailer 
containing the FWD equipment. The test speed is limited by the impulse response duration. With the 
appropriate signal processing, it is possible to measure the impulse response from the weight of the 
rolling stock itself to estimate of track modulus (Kobayashi et al., 2008). Early approaches investigated 
the possibility of measuring track modulus and lateral alignment with gyroscopic sensors mounted on the 
bogie (Weston et al., 2003). The method based its estimate on the principle that double integration of the 
acceleration signal produces vertical displacement. However, the offset cancellation and required 
calibration became impractical. This method still holds promise and could yield better results with 
adaptive advanced signal processing concepts. 

2.4.4.2 Vehicle-track interaction monitors 

Inertial sensors that analyze impulse responses from the vehicle-track interaction are the least developed 
of all NDE technologies currently in use. The FRA sponsored the development and testing of a GPS-
accelerometer-based device in 1996 to monitor the vibration of wheel and axle assemblies.  ENSCO, Inc. 
commercialized the technology in 1998 as a vehicle track interaction (VTI) monitor, and has since 
deployed it on about 250 freight and passenger trains in North America and Australia (Stevens, 2009). 
The installation and processing requirements are complex. 

The VTI varies with the type of track irregularity and quality of the rail, tie, ballast, and sub-grade. 
Testing demonstrated that the system could detect 84% of FTSS “exception” conditions by using a neural 
network to establish the optimum shock-level thresholds (FRA, 2000). It is otherwise difficult to establish 
these thresholds analytically or by trial and error. Possible shock levels vary widely, due to a combination 
of the specific abnormality type and the VTI characteristics under variations of carload, configuration, 
speed, and condition.   

Early testing showed that VTI sensors produced a high false positive rate (20%) for vehicle suspension 
faults (Tuzik, 2005). However, with the appropriate sample rate and signal processing, it should be 
possible to improve their performance.  

Based on the unit design, construction details, and required deployment configuration, an experienced 
engineer’s estimate would be roughly several thousand dollars per VTI sensor, not including installation, 
configuration, cellular connectivity, or maintenance costs. This high unit cost is likely a significant factor 
in their limited deployment.  
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Railroads are seeking to enhance the efficiency of inspections and maintenance of way. Instead of 
continually searching for track abnormality throughout the system during precious track time, this paper 
introduces a new low-cost wireless smartphone-based sensor technology and method for guiding 
inspectors to the likely locations of track abnormality for more efficient diagnosis and remediation.  

2.5 Inertial Sensor Based Systems 
Inertial sensors, such as accelerometers and gyroscopes, have been widely used in asset management 
since the early 1990s. A gyroscope measures the sensor’s angular velocity while an accelerometer 
measures the specific external force acting on the sensor. This section focuses on an extensive and 
systematic review of inertial sensor applications, and challenges in transportation health monitoring. 

2.5.1 Inertial Sensor Applications 

The inertial sensor applications reviewed in this section focused on vehicle-track interaction monitor 
applications. The application normally contains two steps: data acquisition and data analysis. Inertial 
sensors normally collect vibration signals through the vehicle-track dynamic interaction due to track 
irregularities and surface abnormalities. And signal data processing techniques will be selected for further 
acceleration signals data analysis to identify track irregularities and detect faults or surface abnormalities. 

Inertial sensors are widely used as data acquisition tools due to their small size, low power consumption, 
and robustness. A wide variety of inertial sensors are available on the market, ranging from uniaxial 
accelerometer/gyroscopes to inertial measurement units (IMUs) with 6 degrees of freedom. The dynamic 
range of the measurements varied, depending on the sensor type and implementation characteristics. 
Inertial sensors and their configurations are summarized in Table 2.2.  
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Table 2.2  Inertial Sensor Application Specifications  

Year 
Number 

of 
Sensors 

Types and Specification 
Sampling 
Frequency 

(Hz) 
Position of the Sensor Accelerometer Gyroscope 

Measuring 
Axes 

Measuring 
Range 

Measuring 
Axes 

Measuring 
Range 

2000 4 2  3   Axle-box 

2006 15 3 ±100g; 
±10; ±4g 3  4000 Bogie frame 

2006 3 3    2000 Vehicle body, axle-box 
2006 3 3    2000 Vehicle body and axle-box 
2006  3  3   Bogie, axle-box 
2007 4 2  3   Bogie 
2007 4 2 ±10g 3 ±50 ° s-1  Bogie  
2007 9  ±250g   3000 Each axle-box of bogie 
2010 3 3  3  2000 Car body and bogie 
2010 3 3     Bearing box of wheelset 
2011  3     Axle-box 
2011 3 3  3   Car body 
2011  3  3  2048 Axle-box and bogie 
2011 1 3    100 Overhead luggage rack 
2011 4 3  3  4000 Axle boxes 
2011 5 3     Axle-box, bogie 
2012 2     2048 Axle-box and bogie 
2012 4 3 ±500g   100 Lead bogie axle-box 
2013 2 3 ±3g    Bogie 
2013 3 3  3  1000 On board 
2014 3 3  3   Bogie 
2014 2 3     Driving wheels; free running 

h l  2014 3 3  3   On-board 
2014 2 3  3  82 On-board 

2014 3 3;3;2 ±70g; 
±18g;±1.7

 

  79,200 
4000 

 

Axle-box; bogie; car-body 

2014 4 3     Lead bogie axle-boxes 
2015 4 3    2000 Car body 
2015  3     Wheel axles boxes 
2016 2 3 ±60g    Motor bogie, trailer bogie 
2016 8 3 2g, 10g   2000 Car body floor, bogie frame 
2016 4 3 ±50g   2000 Axle-box of bogie 
2017 5 2,3    1,600 Wheel truck; inside cabin 

*note, the missing value in the table indicates the corresponding information is not available in the application report or journal. 

From Table 2.2, we can see the dynamic range of accelerometers used in asset condition monitoring was 
from ±2 g to ±500 g, where g is the g-force unit. Inertial sensor collection sampling frequency ranges 
from 82 Hz to 4000 Hz, and it worth noting the actual data were collected under a non-uniform sampling 
frequency rate. Also note there is no clear guidance on sensor configuration selection, number of sensors, 
and the location of the sensors, but most of the research has multiple sensors (more than one) and inertial 
sensors are normally mounted on axle boxes and bogies. 
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The signal data were filtered or processed after they were collected. The signals from inertial sensors 
contain noise and other unwanted signal components, including low-frequency components, such as 
undesirable offsets. Therefore, the selection of the appropriate signal filtering technique is crucial to the 
success of the application. 

2.5.2 Filtering Techniques 

Linear time-invariant (LTI) filters are those whose behavior does not change over time. LTI filters are 
implemented using finite impulse response (FIR) or infinite impulse response (IIR) methods. The basic 
structure of the FIR filter requires a multiplier, an addition, and a unit delay.  Characteristics of IIR filters 
are as follows (41): 

• Based on transforming a continuous-time analog filter into discrete-time filter 
• Incorporates delays of the output signal 
• Allows both zeros and poles 
• Can be implemented with recursion  
• It is a feedback filter  

Advantages: leverages decades of experience in designing analog filters; less expensive than FIR filters; 
allows for greater shaping potential. 

Drawbacks: They can have phase distortion and ringing; they are not guaranteed to be stable. 

A Kalman filter (KF) is a model-based method.  A KF offers more practical implementations based on the 
recursive concept (33). A KF consists of a predictive block and correction block. Time update uses the 
dynamic equation to predict the next time step. Measurement update explains how the information 
available in the new measurement is incorporated into the estimate. The time update of the KF consists of 
the current state prediction and system process covariance calculation (33). The KF is widely used as an 
effective health monitoring method for linear systems, and the extended KF is normally used for 
nonlinear stochastic systems. The KF is a method widely used for state and parameter estimation. 

Convolution is the mathematical way of combining two signals to form a third signal that has much better 
performance than recursion filters, but executes much more slowly (36). They are also called finite 
impulse response filters. However, there is a delay such that all incoming samples receive the same 
treatment so that the signal phase relationship is preserved (35). An algorithm called FFT convolution is 
used to increase the speed of the convolution, which allows the FIR filter to perform faster. 

Deconvolution is a filtering implementation that reverses the process of convolution. It recreates the 
signal as it existed before the convolution took place. Deconvolution works well in the frequency domain. 
It usually requires knowing the characteristics of the convolution, which is the impulse response and the 
output vector (spectra). Researchers (36, 42) have applied deconvolution filtering to measure railcar body 
vertical accelerations. The authors used Laplace transform theory and pole-zero plots to achieve the 
deconvolution. In essence, deconvolution filtering eliminates or at least reduces the amplification and 
attenuation effects of the railcar suspension system. Deconvolution filtering advantages are that they are 
often linear, deterministic, non-iterative, and fast. The disadvantages are their sensitivity to noise, which 
can result in noise amplification and the difficulty of incorporating available a priori information. 

2.5.3 Limitations and Challenges  

The sampling collection rate of the inertial sensors often varies during data collection non-uniformly due 
to the variation in signal processing speeds. Moreover, various inertial sensors are designed at different 
sampling rates, thus different inertial sensors will capture vibrations at various frequency bands. 
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Aliasing is an effect that causes different signals to become indistinguishable when sampled. In other 
words, high-frequency input signals will appear as low-frequency signals at the output. If aliasing occurs, 
no signal processing operation downstream of the sampling process can recover the original continuous 
time signal. It occurs when a signal is sampled too slowly. To prevent aliasing, the signal must be 
sampled at least twice as fast as the highest frequency component (Nyquist criterion). 

Group delay distortion occurs when signals at different frequencies take a different amount of time to pass 
through a filter. If the phase response is linear, the group delay of the filter is constant, which means that 
each frequency component experiences the same delay. Otherwise, the frequency components have 
different delays, which cause a smearing phenomenon in the time-domain signal. It is important to 
describe a filter’s passband characteristics or evaluate the filter’s phase nonlinearity.  

In practice, due to tradeoffs in roll-off steepness, filter delay, and computational complexity, the 
maximum cutoff frequency should be set much lower than half the minimum sample rate of the sensor. 
Therefore, some practices use as high a sample rate as possible, within some reasonable considerations 
for minimizing the data accumulation rate and the sensor power consumption. 

The inertial sensors suffer from bias instability, noisy output, and insufficient resolution. Digital filtering 
is an important technique used to address such issues. Much research has been conducted or proposed to 
obtain “good” digital filters with high performance. However, in practical applications, few research 
results are used efficiently. Since the research field of digital filters have become diverse and 
complicated, there is a lack of understanding of what constitutes a good digital filter and how can we 
obtain it. 
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3. APP TO USE SMARTPHONE AS SENSORS 
In lieu of having no low-cost and low-power commercial sensors, the research team developed a 
smartphone application capable of autonomously collecting and uploading data from hi-rail vehicles, 
geometry cars, locomotives, and end-of-train cars where power is available. The technology transfer 
phase will inform commercialization partners about the best approaches to develop a lower-cost and self-
sufficient version of the sensor system deployed during the research. 

3.1 RIVET App 
The RIVET app was developed as part of a Mountain Plains Consortium project at North Dakota State 
University, Fargo, ND, USA. The app currently serves only as a data collection device. Online algorithms 
are required to process the data from the inertial, gyroscopic, and GPS sensors. Applications include road 
and rail performance evaluations and condition monitoring. The app is available for research use only, 
and only by written request from the principal investigator. 

3.2 App Installation 

Send a Gmail containing the .apk file to yourself. Open Gmail on your Android device and tap on the 
attachment. This will begin the process of installing the app. 

3.3 App Setup 

3.3.1 Descriptions 

In the “Settings” screen, enter the two description information about your data collection. 

3.3.2 URL 

The URL for your local server must begin with http:// and end with a forward slash /. The following is an 
example:  
 http://dotsc.ugpti.ndsu.nodak.edu/PAVVET_SMARTSe/PL/  

This assumes that you have already set up your local server and it has a valid URL. The server must have 
a verifiable security certificate. The app makes an HTTP post to the URL provided and responds with an 
“Invalid URL” for HTTP status codes of 404, 405, or greater than 500. 

See the appendix for instructions in setting up a local server in Windows. You can map the URL as a 
network drive to view and download the .CSV files. See instructions for mapping a network drive here:   

https://www.ndsu.edu/its/help_desk/collaboration_and_storage/file_services/map_drives/window s7/ 

3.3.3 Screen Lock 

Activate this to keep the app active during data logging. If the screen falls asleep, some Android phones 
will throttle down its performance. This will slow down data logging and uploading, and perhaps produce 
other unexpected behaviors.  

 When using the app in unattended mode, turn down the intensity level to the minimum to conserve 
battery life if power is lost. The device will stop logging and uploading files if power is lost and will 

http://dotsc.ugpti.ndsu.nodak.edu/PAVVET_SMARTSe/PL/
https://www.ndsu.edu/its/help_desk/collaboration_and_storage/file_services/map_drives/window%20s7/
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continue to log and upload files when power returns. This feature is essential when automatically logging 
data in vehicles (trucks, trains, etc.) with the phone plugged in, and without having to ever attend to the 
device. 

3.3.4 Calibrate Inertial Sensors 
Use of this feature is not recommended:  

• When tapped, the app gets an average value of the accelerometer data for one second, and then 
subtracts that value from the logged variables. Note carefully that this includes the Az value, 
which typically reflects the 1-g pull of earth. This value persists throughout app launches.  

• Use of the calibration function is not recommended because sensor offsets can be removed with 
offline processing and filtering. The app posts a message if calibration was done, and the 
timestamp of the last calibration is located in the header (fifth column of the first row). There is a 
known issue where the first 60 samples are static before the calibrated values are applied. Hence, 
use of this feature is not recommended. 

3.4 Main Screen 
The values shown are:  

• Accelerometer update rate in Hz averaged over a one-second interval. 
• GPS update rate in Hz averaged over a one-second interval.  
• Speed in meters/second. This is the instantaneous sample (not averaged).  
• Accelerometer in the three dimensions: Ax, Ay, and Az. They are the instantaneous samples (not 

averaged) in units of meters/second. They must be converted to g-force when used to produce the 
RIF.  

• Gyroscope angles in three dimensions: Azimuth (or Yaw), Pitch, and Roll. They are the 
instantaneous samples (not averaged) in units of degrees. They must be converted to radians 
when producing the resultant accelerations from a rotated device.  

• Magnetic field strength in three dimensions: Mx, My, and Mz. They are the instantaneous 
samples (not averaged) in units of micro-Tesla.  

Note that the device logs the gyroscope angular velocities in three dimensions: Rx, Ry, and Rz, but does 
not display them on the main screen. They are in units of radians per second. 

3.5 File Upload 
At about 400 Hz, each file size is about 4,600 KB each minute. 

3.5.1 Automatic Uploads 

• Tap “Start Logging” or simply plug in the device to initiate data logging and uploading. The files 
automatically upload approximately every minute. 

• Data logging continues and files are queued if the network connection is lost while logging. 
When the network connection returns, the device uploads whatever files were pending during the 
outage, and continues to upload files every minute. 

• If the network connection is lost during a file upload, the device may attempt to re-transmit the 
same file when connection returns. This can lead to a single file having two headers. The data 
cleaning process must detect this and remove the redundant data. 
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3.5.2 Manual Uploads 

• Tapping “Stop Logging” causes any pending files logged to automatically upload. 
• If logging was stopped during a network outage, toggling “Start Logging” and “Stop Logging” 

uploads any queued files, plus the one created due to “Start Logging” 

3.6 Power Management 

Plugging into power at any time initiates a new data logging session. Unplugging the device stops data 
collection and uploading. 

3.6.1 Plugged In 

• When a “Start Logging” session is initiated while plugged in, the device logs and uploads data 
continually until “Stop Logging” is tapped. 

• With the app launched, plugging the device into power automatically initiates data logging and 
uploading. 

• If started while plugged into power, the app logs and uploads data normally. It stops logging data 
if power is lost. It restarts logging data when power returns. 

• Android Pixel devices can stay alert and monitor for power returning for more than 24 hours. 
This also assumes the screen intensity is turned down to minimum, with screen-lock activated. 

3.6.2 Unplugged 

While unplugged and logging data, a plug-in event will restart the data logging 

3.7 Data Files 
The organization of the data file is two rows of information and labels, followed by the data. Each data 
row is a sample of the accelerometer data. GPS data update more slowly, so it is repeated until updated. 

3.7.1 Header Row 1 

• Column 1: Device Unique ID  
• Column 2: Data entered into the settings “Location” field  
• Column 3: Data entered into the settings “Comment” field  
• Column 4: Timestamp of file creation in epoch time format for milliseconds  
• Column 5: Timestamp of last calibration in epoch time format for milliseconds 

3.7.2 Header Row 2 

Labels for the 16 data fields 

3.7.3 Data Rows 

• Column 1: Timestamp of data in epoch time format for milliseconds (DateTime)  
• Column 2: Latitude in decimal degrees (Lat) 
• Column 3: Longitude in decimal degrees (Lon)  
• Column 4: Speed in meters-per-second (Speed)  
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• Column 5: Accelerometer x-value in meters-per-second-squared (Ax)  
• Column 6: Accelerometer y-value in meters-per-second-squared (Ay)  
• Column 7: Accelerometer z-value in meters-per-second-squared (Az)  
• Column 8: Gyroscope yaw angle in degrees (Azimuth)  
• Column 9: Gyroscope pitch angle in degrees (Pitch)  
• Column 10: Gyroscope roll angle in degrees (Roll)  
• Column 11: Gyroscope rotation rate around the x-axis in radians-per-second (Rx)  
• Column 12: Gyroscope rotation rate around the y-axis in radians-per-second (Ry)  
• Column 13: Gyroscope rotation rate around the z-axis in radians-per-second (Rz)  
• Column 14: Geomagnetic field strength along the x axis in micro-Tesla (Mx)  
• Column 15: Geomagnetic field strength along the y axis in micro-Tesla (Mx)  
• Column 16: Geomagnetic field strength along the z axis in micro-Tesla (Mx) 

3.7.4 Application Notes 

• Mount the devices flat to the vibrating surface to maximize the contact area. Secure it with tape to 
prevent bouncing around.  

• Disable all other apps on the device to prevent any interruptions. 
• Disable all automated app updating. 
• Disable automatic OS updating.  
• Disable all notifications of any other apps so that vibrations or audio alerts do not register falsely 

as inertial events.  
• For application in calculating the RIF, divide the accelerometer values by -9.06 to get g-force.   
• Convert the degrees to radians when performing the matrix rotation.  
• The recommended practice for using PAVVET algorithms with RIVET data files is to first 

convert the RIVET data into the PAVVET format. 

3.8 Setting Up the Local Server 

3.8.1 Setting Method 1 

Step 1: Install Internet Information Services (IIS). See the following or a similar link for instructions: 
http://www.howtogeek.com/112455/how‐to‐install‐iis‐8‐on‐windows‐8/ 

In addition to IIS, CGI also needs to be installed. It is found in the IIS selections in the Windows Features 
dialog box. Select to enable it, as it is not enabled when IIS is first selected.  

Also see the following link for setting up a basic website in IIS: https://support.microsoft.com/en-
us/help/323972/how-to-set-up-your-first-iis-web-site 

PHP also needs to be installed for the upload PHP script to work properly. 

• Download PHP here: http://windows.php.net/download/  
• Extract the zip file to a file you create: C:\PHP 
• Open IIS Manager, select the hostname of your computer in the Connections panel, and then 

double-click Handler Mappings.  
• In the Action panel, click Add Module Mapping. 
• In Request path, type *.php. 
• From the Module menu, select FastCgiModule. 

http://www.howtogeek.com/112455/how%E2%80%90to%E2%80%90install%E2%80%90iis%E2%80%908%E2%80%90on%E2%80%90windows%E2%80%908/
https://support.microsoft.com/en-us/help/323972/how-to-set-up-your-first-iis-web-site
https://support.microsoft.com/en-us/help/323972/how-to-set-up-your-first-iis-web-site
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• In the Executable box, type the full path to Php-cgi.exe; for example, C:\PHP\Php-cgi.exe. 
• In Name, type a name for the module mapping; for example, FastCGI. 
• Click OK.  

Step 2: In the C:\inetpub\wwwroot, create the directory where you want the data to go. This is where you 
will place the upload.php file.  

 Step 3: In the IIS Manager, you should see the folder you created under an existing website. If you do not 
have a website created, you should be able to right-click on the server in the Connections window and 
Add Web Site.  

 Step 4: The physical path for your website would be your wwwroot folder. Validate this.  

 Step 5: When you click on the folder you created in the Connections pane, the center pane should have a 
number of icons for you to click on for setting adjustment.  

 Double-click "Default Document" and click on “Add in the Actions Pane” to the right.  

 Add “upload.php.” This will create the web.config file in that folder you created.  

 Step 6: Uncheck the encryption property for upload.php file. 

3.8.2 Setting Method 2 

Step 1. Install Java environment on Windows. The latest version is located at: 
http://www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-3848520.html 

After installing Java, go to installation directory: C:\Program Files\Java. Rename the existing folders to 
jdk jre   

Step 2. Go to Control Panel --- System --- Advanced system setting:  

Click “Environment Variables” under “System variables,” find Path Edit/Add the address of the above 
two folders at the end of the existing one. It should look something like this: C:\Program 
Files\Java\jdk\bin;C:\Program Files\Java\jre\bin 

Step 3. Download tomcat 9.4 from this link: https://tomcat.apache.org/download-90.cgi   Under Core 
select either 32-bit or 64-bit Windows zip file, unzip the folder and move it to C drive and rename it 
tomcat9.4 There should be a folder under C:\tomcat9.4 containing several files/folders such as (bin, 
conf ….)  

 Step 4. Now go to Control Panel  System Advanced system setting  Click “Environment Variables” 
Under “System variables” find Path Create two new variables as follows,  Variable name: JAVA_HOME 
 Variable value: C:\Program Files\Java\jdk Variable name: CATALINA_HOME Variable value: 
C:\tomcat9.4  

Step 5.  Test if every step was done okay so far. Open terminal (Command Prompt) and type “javac.” You 
should not get any error –, which means that Java is installed successfully.   Open another terminal and 
go to C:\tomcat9.4\bin Type startup.bat. It will start the server. If it asks for permission click yes.  Open 
your browser and type localhost: 8080.  It should show Apache homepage.  Then shut it down by typing 
showdown.bat.  

http://www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-3848520.html
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Step 6. Download the Quercus zip file from here: 

https://drive.google.com/open?id=1CIsAnCvUsTwBm2FxpUwEtCc3SEoWERZP.  

Unzip the Quercus zip file and then place the quercus-4.0.39 folder and quercus-4.0.39.war into the 
folder: C:\tomcat9.4\webapps.  

When first running the localhost server, the system would automatically remove the folder (pavvet-web) 
from the quercus-4.0.39 folder, hence creating a problem. To resolve this issue, recopy the folder (pavvet-
web) into the folder (quercus-4.0.39 folder) in your system. 

Step 7. In the Phone setting, set the URL or IP as: http://xxx.xxx.x.xxx:8080/quercus-4.0.39/pavvet-web  

When done, files will be saved in this location in .csv format C:\tomcat9.4\webapps\quercus-
4.0.39\pavvet-web.    

Step 8. Whenever you want to make connection between your phone and computer, you should run 
startup.bat; when you are done, shut down the server.  

3.9 Orientation Conventions  
Orientation is positive in the clockwise direction. Angles are in degrees (unlike rotation rate). Azimuth is 
angle around the z-axis in degrees; Pitch is angle around the x-axis in degrees; Roll is angle around the y 
axis in degrees. They are shown in Figure 3.1. 
 

 
Figure 3.1  Orientation of the mobile device with three angular quantities 

  

http://xxx.xxx.x.xxx:8080/quercus-4.0.39/pavvet-web


21 
 

4. DATA COLLECTION AND PROCESSING 

4.1 Data Collection Plan 
Data collection is a crucial step in the process of the project, because valid and reliable data are the 
backbone of this research. Before collecting data, we need have a solid understanding of the purpose of 
the data collection to meet our desired research requirements and to design a detailed list of the specific 
measures we will consider in future data analysis. This chapter introduces the data collection plan, the 
data cleaning, and the data fusion techniques developed in this research 

4.1.1 Identify Collaborating Railroad  

Northern Plains Railroad & Rail Services owns Northern Plains Railroads (NPR). NPR is a customer-
focused regional railroad operating a 350-mile network in North Dakota and western Minnesota. Since 
1997, NPR’s operations have primarily evolved into grain and miscellaneous industrial product handling 
and transportation systems. NPR&RS provide various in-house and third-party rail services, including 
track maintenance, repair, and construction. Due to its professional expertise in track maintenance and 
repair, NPR has been recognized through a comprehensive rail satisfaction survey conducted by the North 
Dakota Public Service Commission, scoring the highest in customer satisfaction of railways operating 
safely in the state. 

4.1.2 Data Collection Plan 

The Federal Railroad Administration (FRA) serves as safety agency to issue safety rules covering issues 
specifically connected to the railroad industry and the federal Occupational Safety and Health 
Administration (OSHA). The FRA also issues general safety and health regulations that apply to the 
railroad industry. Moreover, each railroad company has its own corporate safety standards and advisory 
for their railroad workers and visitors to ensure workplace safety. Due to liability concerns, most railroads 
do not run a hi-rail vehicle over the same line every day. Perhaps they may do so once per week. So it is a 
challenge for researchers to collect a statistically significant sample size over a short time period where 
the rate of track deterioration is relatively slow. 

The alternative plan is to collect data across a specific track section with known surface abnormalities 
over an extended data collection period, which accumulates to the number of needed traversals. For 
instance, if the hi-rail collects data once per week over the selected track segment, then the period to 
accumulate data from 15 traversals will be around four months. In that case, the researchers will need to 
attach Android phones to the hi-rail vehicle, secure it in a semi-permanent position with line-of-sight to 
GPS satellites, plug it into the vehicle power supply, and launch the data collection app to automatically 
collect and upload data. The app will automatically start and stop data collection, without manual 
intervention, when power returns and leaves, respectively. This method assumes that a) the rate of 
deterioration over the four-month period is negligible, and b) the vehicle will be started within 24 hours to 
recharge the battery on the phone. 

This alternative automatic data collection plan requires the following two action if the railroad agrees: 1) 
at least two researchers (Pan and Leonard) visit NPR to install the phones on the identified hi-rail, connect 
it to the vehicle power supply, and activate the app on that day; and 2) if the app ever stops working (that 
is, we observe no uploaded data when expected), then one identified researcher (Leonard) will contact 
Michael to restart the phone, verify that it is charging, re-launch the app, and verify that it is uploading 
data. 
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In this data collection plan, the researchers will need a critical supportive document from NPR that lists 
the known abnormality profile, the detailed abnormality association information, and their location in 
geospatial coordinates of latitude and longitude. 

4.1.3 Proposed Data Collection Locations and Phone Installations 

A hi-rail vehicle is typically a modified road truck that can operate both on rail tracks and conventional 
roads. They typically keep their normal rubber tires, but are equipped with additional flanged steel wheels 
to run on rail tracks, as shown in Figure 4.1. The interior of a hi-rail vehicle is a typical truck interior. Due 
to the limited truck interior space and power supply resources, a three-phone data collection system is 
proposed. The rationale is to accommodate the limited space and to provide enough information to verify 
location effects on the algorithms. 

 
Figure 4.1  A typical hi-rail vehicle 
 
The following proposed potential locations are recommended considering the different kinetic energy 
responses: 1) on top of the driver side dashboard, 2) on top of the passenger side dashboard, 3) on the 
floor of the rear passenger side, 4) on the floor of the front passenger side, 5) on the floor under driver 
seat, 6) on truck floor under passenger seat. Then the final three locations can be selected among those 
proposed potential locations based on power supply resources, installations, and GPS signal receiving 
strength. 

The hi-rail ride on the track will be not as smooth as on pavement, so it is important to securely fix the 
phones on hi-rail. The objective is to secure the phones so they do not move around during the data 
collection period. One option is to use duct tape. Another option might involve drill installation. 



23 
 

After the installation, the researchers need to generate a phone location map, including their level relative 
to the floor of the vehicle, and the level of the vehicle’s floor to the track and on pavement.  

4.2 Data Cleaning and Data Fusion 

4.2.1 Data Collection Setups 

Harsco Rail’s LD515 HY-RAIL® is the vehicle used in this research to collect data. It features hydraulic 
locks, push button actuation, electrical track insulation, and mechanical safety pins. The vehicle is shown 
in Figure 4.2 a). The HY-RAIL® is a remodel of a 2015 Ford F-350 light duty truck equipped with 
Harsco model 1515 rail gear with steel wheels. The detailed specifications of the Harsco LD1515 are 
shown in Table 4.1.  

 
Figure 4.2  a) HY-RAIL® vehicle used; b) Phone 1 installed on dashboard; c) Phone 2 installed 
 under driver seat; d) Phone 3 installed under passenger seat 

A hi-rail vehicle is typically a modified road truck that can operate on both rail tracks and roadways. 
Short-line railroads typically use such hi-rail vehicles for daily manual inspections. The smartphone 
location setup considered the different kinetic energy responses, power supply resources, and the GPS 
signal strength. Figure 4.2 shows the hi-rail vehicle used in the research and the three locations of 
smartphone installations. 
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Table 4.1  HY-RAIL LD1515 Specifications 
OID Item Descriptions 
1 Truck Weight Classification Light duty up to 11,500 lbs GVWR 
2 Maximum Rail Travel Speed 45 mph 
3 Unit Weight 320 lbs 
4 Load Capacities Steel wheels: front and rear units – 3,000 lbs each 

Rubber tread wheels: 1,400 lbs each 
5 Guide Wheel Load Steel wheels: front and rear units – 1,500 lbs each 

Rubber tread wheels: 700 lbs each 
6 Suspension Coil spring with over load protection 
7 Guide Wheels 10 in. tread diameter, rubber tread or steel tread 
8 Wheel Bearings Sealed maintenance free bearings 
9 Safety Pin Locks Mechanical pins plus hydraulic PO check locks 
10 Raise/Lower Operation Electrical/hydraulic actuation with push button 

controllers 
11 Track Gauge Availability 56.5 in., 63 in., and 66 in. 
12 Track Signal Insulation All guide wheels electrically insulated for track signaling 
13 Included Equipment Mounting brackets, steering wheel lock, de-rail guards, 

wheel modifications, front rail sweeps, hydraulic power 
pack, electrical controls 

14 Optional Equipment Steel or rubber tread guide wheels, emergency hand 
pump, rear rail sweeps, inside electrical controls, wireless 
remote controller, aluminum wheel modifications, guide 
wheel grease guards 

15 Total Installed Weight 1,000 lbs 

4.2.2 Data Collection  

The automated track monitoring system consists of Android phones placed in a hi-rail vehicle, as shown 
in Figure 4.2 b), c), and d). The accelerometers of the phones will generate directional accelerations at a 
rate of 400 measurements per second. In addition, the phones will generate GPS location information 
every second. These raw measurements must be wirelessly transmitted from the phones. They are then 
filtered, archived, and processed and used to generate useful indications, such as yaw, pitch, and roll. 

Three Android phones are installed in a hi-rail vehicle for a testing period of three months. One of the 
phones is secured to the dash, and the other two phones are placed in the rear interior of the vehicle under 
a seat. There is power access to all three phones. The goal of the calibration project is to collect data from 
more than 100 traversals over the same track segments. The primary areas of interest are locations where 
known geometry issues exist, i.e., places that have been observed by the track inspector. Ideally, 
measurements of warp, profile, and alignment taken by the inspector at these locations can be compared 
to measurements predicted by the automated in-vehicle system. Ideally, the hi-rail vehicle’s route will 
include some areas of acceptable geometry so that the calibration process will minimize the possibility of 
false positive findings. 

Before the project commences, a data confidentiality pledge will be signed by UGPTI to protect the 
confidentiality of the data collected on the Northern Plains Railroad’s property. The data will be used for 
research purposes only and will not be publicly shared. Specific location information will also be kept 
confidential. 
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4.2.3 Data Fusion 

The GPS to record the locations of detected track anomalies is the main location information source for 
the research; however, several factors limit GPS accuracy: 1) the speed of radio frequency signals is not 
constant, 2) multipath fading causes path distance errors, and 3) atomic clock discrepancies and receiver 
noise will also result in GPS errors. Moreover, the relatively slow update rate of GPS receivers relative to 
the inertial sensors leads to a loss of position resolution. Those factors will cause sensor signal alignment 
errors. Thus, the signaling data from various sensors, accelerometers, gyroscopes, and GPS should be 
fused or aligned to increase the position resolution. 

On-board sensors allow for the combining of features extracted from inertial sensor signals, across 
multiple train traversals, to significantly enhance their signal-to-noise (SNR) ratio by ensemble averaging. 
False positives and false negatives decline as SNR increases. On the other hand, variable train speeds, 
GPS position registration errors, slow GPS update rates, and the uneven sampling rate of inertial sensors 
result in the misalignment of extracted features. Hence, subsequent ensemble averaging can actually 
degrade the SNR. 

Many researchers assume there is a given known signal feature (also known as the first major valley or 
FMV), and estimating the sample position of missing GPS updates by interpolating their relative position 
to the FMV using time and speed data (Bridgelall et al., 2016). Such assumption of known ground 
anomaly location is not true for position identification purpose. In this research, a statistical based method 
named left-of-centroid-out-equal-length (LCOEL) is proposed to align the data and method performance 
is compared with well-established data fusion method assuming known ground anomaly location 
(Bridgelall et al., 2016). The same data used in the literature are used to test on the proposed method. 

A centroid at the center of the maximum overlapping segments is identified and subsequently creates a 
centerline that bisects the centroid such that it is perpendicular to the analysis line. The centroid position 
is given as: 

𝑋𝑋� =
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 ,𝑌𝑌� =
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 (1) 

 
where xi and yi are the coordinates for GPS block i and n is the total number of GPS blocks. The GPS 
block for all traversals that falls on the left of the center line are recorded. Subsequently, those GPS 
blocks for each traversal are spatially joined to the center line to obtain a distance. Distances are 
interpolated using time and speed from the left of the GPS block to match the previously obtained 
distance on the center line. A new zero position is then introduced at that matched distance. Distances are 
interpolated to the left and right of the new zero position. All traversals are truncated based on the 
recorded shortest distance to the left and right. The first sample of all truncated traversals is marked as the 
new starting zero position. Starting from the new zero position, the distance is interpolated to the new 
ending position. Distances to the FMV are recorded for all traversals. 

Table 4.2 summarizes the statistics of the reference method and LCOEL method. The statistics are the 
standard deviation of the FMV (STD FMV), the standard deviation of the truncated segment lengths 
(STD Length), the margin-of-error (MOE) in the 95% confidence interval of the FMV (MOE FMV), the 
MOE in the 95% confidence interval of the segment length (MOE FMV), and the skewness of the 
distribution for the FMV (Skewness). Table 4.2 also includes the p-values of three different tests for 
normality of the statistical distributions of the FMV. MOE is defined in equation (2). 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑍𝑍𝑍𝑍
𝜇𝜇√𝑛𝑛

 (2) 
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where Z is the z-score associated with a 95% confidence interval, and having the value of 1.96. The mean 
and standard deviation of the interpolated distance is µ and σ, respectively. The number of samples in the 
inertial signal data is n. 

Table 4.2  Summary Statistics of Each Method 

Method STD 
FMV 

STD 
Length 

MOE 
FMV 

MOE 
Length Skewness 

P-Value 
Kolmogorov-
Smirmov 

Cramer-von 
Mises 

Anderson-
Darling 

Reference 0.09 0.09 0.024 0.024 -0.15859 >0.150 >0.250 >0.250 
LCOEL 4.03 0.13 1.08 0.03 -0.3347 >0.150 0.128 0.149 

 
The Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises tests for normality are based on the 
empirical distribution function (EDF) and are often referred to as EDF tests. The empirical distribution 
function is defined for a set of n independent observations X1 . . . Xn with a common distribution 
function F(x). Under the null hypothesis, F(x) is the normal distribution. The empirical distribution 
function, Fn(x), is defined as: 

𝐹𝐹𝑛𝑛(𝑥𝑥) =  �
0,
𝑖𝑖/𝑛𝑛,
1,

𝑥𝑥 < 𝑋𝑋(1)
𝑋𝑋𝑖𝑖 ≤ 𝑥𝑥 ≤ 𝑋𝑋(𝑖𝑖+1),

𝑋𝑋(𝑛𝑛) ≤ 𝑥𝑥
 𝑖𝑖 = 1, . . . ,𝑛𝑛 − 1 (3) 

 
Note that Fn(x) is a step function that takes a step of height 1/n at each observation. This function 
estimates the distribution function F(x). At any value x, Fn(x) is the proportion of observations less than 
or equal to x, while F(x) is the probability of an observation less than or equal to x. EDF statistics 
measure the discrepancy between Fn(x) and F(x). 

The EDF tests make use of the probability integral transformation U = F(X). If F(X) is the distribution 
function of X, the random variable U is uniformly distributed between 0 and 1.  Given n observations 
X(1), . . . X(n), the values U(i) = F(X(i)) are computed. 

Based on the summary statistics in Table 4.2, one can see that the reference method outperforms the 
proposed method with all statistics, including skewness. However, our research result is very promising 
with all the proposed algorithms able to produce comparable alignment measurements, considering our 
method is not based on any known ground anomaly location. 

The null hypothesis of the normality test was that there is no significant departure from normality. The 
commonly accepted approach is to reject the null hypothesis when the p-value is less than 0.05, or 5%. 
Both the reference method and the LCOEL method fail to reject the hypothesis for all three tests. This 
result indicates those methods maximally agree with a Gaussian distribution. Since both the skewness and 
normality tests agree, this research selects the LCOEL method for signal alignment. 
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5. TRACK SURFACE UNEVENNESS IDENTIFICATION 
METHODOLOGIES 

5.1 Methodologies 
The developed method processes the GPS tagged inertial data collected from smartphones aboard a hi-rail 
vehicle to estimate the positions of track irregularity, and to summarize the accuracy of their position 
estimates. The method incorporates a signal processing technique that reduces the inertial signals errors 
associated with the warp to features called road impact factors (RIFs), which the author has previously 
used to monitor pavement roughness (Bridgelall, 2014). The method uses a geographical information 
system (GIS) platform for the visualizing peak inertial events (PIEs), which are RIF values in the high 5 
percentiles of its distribution. 

Rail track surface unevenness and irregularities, such as damaged rail, flattened rail, track alignment, 
profile, and warp, result in roughness when the train load traverses them at some speed. The smartphone 
embedded three-dimensional accelerometers sense the induced roughness. A first step in data preparation 
is the conversion of each accelerometer value in meters/second to g-force. A second step is to remove any 
signal offset between GPS updates by subtracting the mean signal. A third step is to produce the resultant 
g-force, Gt in units of the radians per second with the following equation: 

𝐺𝐺t = �𝐴𝐴𝑥𝑥𝑥𝑥2 + 𝐴𝐴𝑦𝑦𝑦𝑦2 + 𝐴𝐴𝑧𝑧𝑧𝑧2                                                      (4) 

The RIF-transform produces an intensity RIFRt that is proportional to the resultant rotation rate about x 
and y axis. The RIF-transform is defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅Rt  =  � 1
𝐿𝐿
∑ |𝐺𝐺𝐺𝐺𝑛𝑛 𝑣𝑣𝑛𝑛|2 𝛿𝛿𝛿𝛿𝛿𝛿𝑁𝑁−1
𝑛𝑛=0                                                                                                   (5) 

where RIFRt is the average magnitude of rotation rate per unit of distance L travelled (Bridgelall et al., 
2017). The sample period 𝛿𝛿𝛿𝛿𝛿𝛿 is time changes between two inertial samples. A speed sensor produces the 
instantaneous traversal speed 𝑣𝑣𝑛𝑛 at sample n for N total samples. 

As shown in Figure 5.1, the RIFRt feature values follow a normal distribution, with a truncated left tail. 
After data cleaning, the RIFRt distribution provided a means to visualize the PIEs; if the RIF values are 
within upper 2.5 percentile, it indicates very high likelihood of severe track surface irregularity, and if the 
values are within the upper 1 to 2 standard deviation from the mean, it indicates high likelihood of track 
surface irregularity.  
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Figure 5.1  Distribution of RIFRt 
 
The data used for this study are from two traversals collected from the three smartphones installed at three 
different locations on the hi-rail vehicle. ArcGIS plots the intensity of the RIF features at their 
corresponding longitude and latitude position of each GPS position update (GPS blocks) as small circles 
with color-coded levels, and with red and orange described as above—green being within 1 standard 
deviation from mean, light blue being within the lower 1 to 2 standard deviation from mean, and black 
being in the lower 2.5 percentile. 

Figure 5.2 shows the RIF features from the data collected by one smartphone. We can see there is one 
location based on our peak RIF value that corresponds to the inertial signals, indicating a very high 
probability of surface abnormality at that location, shown as a red triangle, while the other reported peak 
RIF values are coded as other colors. 

To better understand our abnormality location estimation result, the authors asked the railroad 
maintenance engineer if he found any surface anomaly around the time and region the method detected an 
anomaly. Note that the authors did not release any detailed location and time to the engineer. The 
engineer did find one abnormality report from his work log on the same day the authors identified the 
anomaly. Based on the engineer’s report, we plotted the location on Figure 5.2, showing it as a big bright 
green circle. One can tell it is very close to our estimated location, shown as a red triangle. 
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Figure 5.2  RIFRt features for each GPS block reported by one smartphone with two traversals 
 
The actual reported location will serve as ground truth location for our method validation. The identified 
anomaly RIF peak values collected from all three phones and both two traversals are summarized in Table 
5.1. 

Table 5.1  Identified Surface Irregularity from Three Phones and Two Traversals Compared to 
Ground Truth 

Data Resource ID 1 2 3 4 5 6 

RIF Peak Values 0.268 0.290 0.292 0.397 0.451 0.488 
Distance to Ground 
Truth Location (M) 9.59 12.38 9.87 10.07 13.59 4.89 

 
Table 5.1 indicates that peak-RIF features are within 14 meters of the ground truth with average of 10 
meters. Geometric center (centroid) for all six points is calculated to represent anomaly location 
estimation for various traversals and/or smartphone reports.  

Table 5.2 summarizes the location estimation errors in meters for each traversal and all traversals. Figure 
5.3 indicates an example for one traversal from three phones. 

Table 5.2  Identified Surface Irregularity from Three Phones and Two Traversals Compared 
to Ground Truth 

Centroids  1st traversal three-phone 
data 

2nd traversal three-phone 
data All data 

Distance to Ground 
Truth Location (M) 4.45 1.54 2.73 
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Figure 5.3  Estimated anomaly location from three smartphones with one traversal 
 
From Table 5.2, one can tell the three-smartphone-based system can improve location estimation error 
from within 15 meters to within 5 meters with the geometric center method. A centroid of the PIE clusters 
accumulated from a limited number of traversals (two in the case study) can provide a position of the 
irregularity estimate within a 3-meter error range. The offset from the true irregularity location is within a 
reasonable visual sight distance so it can be seen during a follow-up manual inspection. 
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6. SUMMARY AND FUTURE RESEARCH 

6.1 Research Conclusions 
It is clearly seen the proposed signal-processing algorithms can identify the location of possible rail 
surface irregularities. The traversal data from one smartphone will provide reasonable location estimation. 
With our test data, the errors are within 15 meters, which is within sight distance. This finding is critical 
because each single run with one phone will narrow down the potential surface anomaly within sight 
distance. Such a solution would free up more track time and capacity previously reserved for manual 
inspections while improving safety for railroad workers on duty.  

The three-smartphone-based data collection system will significantly improve the location estimation 
errors; with one traversal, the offset can be improved to within 5 meters, and with two traversals, it can be 
improved to within 3 meters. 

6.2 Future Research 
The research introduced a signal-processing algorithm to estimate the position of peak inertial events in 
order to identify the positions of possible rail surface irregularities. The goal was to characterize the 
effectiveness of using low-cost sensors by fusing their reported signaling data from accelerometers, 
gyroscopic sensors, and a global position system (GPS) to enhance extracted peak features and to 
visualize the inertial events. The research provides very promising surface anomaly identification results 
to show the feasibility of the proposed system and methods; however, future work will be beneficial. 

• Sensitivity analysis on centroid methods to PIE clusters from a larger number of traversals to 
evaluate the optimal number of traversals needed to provide perfect location estimation is needed 
when more data become available.  

• Statistical and data mining algorithms should be developed to transfer the detected inertial events 
into the actual measure of warp, profile, and alignment when more data and reported 
measurements become available. 
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